The critical exponent of Tolman's length

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L357
(http://iopscience.iop.org/0305-4470/17/6/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:25

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The critical exponent of Tolman's length

J S Rowlinson
Physical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK

Received 8 February 1984

Abstract

The change of surface tension with curvature is governed by a microscopic length, δ, introduced by Tolman. It is shown that this length diverges weakly at the liquid-gas critical point of the penetrable-sphere model, with an exponent ($\mu-\beta-1$), where μ is the exponent of the surface tension, and β of the orthobaric densities. This result is compared with those derived from Landau-Ginzburg-Wilson Hamiltonians.

The surface tension of a spherical liquid drop, σ, and the radius at which it acts, the radius of tension R_{σ}, are related by the equations (Rowlinson and Widom 1982)

$$
\begin{array}{ll}
p^{1}-p^{g}=2 \sigma / R_{\sigma} & \text { (Laplace) } \\
\sigma=\sigma_{\infty}\left(1-2 \delta / R_{\sigma}\right) & \text { (Tolman) } \tag{2}
\end{array}
$$

where p^{1} and p^{8} are the pressures in the homogeneous liquid within the drop and in the gas outside it, where σ_{∞} is the tension of the planar surface $\left(R_{\sigma}=\infty\right)$ at the same temperature, and where Tolman's length, δ, is given by

$$
\begin{equation*}
\delta=R_{\mathrm{e}}-R_{\sigma}=z_{\mathrm{e}}-z_{\sigma} \tag{3}
\end{equation*}
$$

Here R_{e} is Gibbs's equimolar surface:

$$
\begin{equation*}
\int_{0}^{\infty} R^{2} \mathrm{~d} R\left(\rho(R)-\rho^{1, g}(R)\right)=0 \tag{4}
\end{equation*}
$$

where $\rho(R)$ is the density at radius R, and

$$
\begin{array}{ll}
\rho^{1, \mathrm{~g}}(R)=\rho^{1} & \left(R<R_{\mathrm{e}}\right) \\
\rho^{1, \mathrm{~g}}(R)=\rho^{\mathrm{g}} & \left(R>R_{\mathrm{e}}\right) \tag{5}
\end{array}
$$

Since equation (2) is valid only for first order in the curvature, $\left(1 / R_{\sigma}\right)$, the length δ can be equated to the planar limit of $R_{e}-R_{\sigma}$, namely $z_{e}-z_{\sigma}$ for an interface in the x, y plane.

In a liquid at low temperatures, δ is the same order of magnitude, $10^{-10} \mathrm{~m}$, as the range of the intermolecular forces, the statistical correlation length, ξ, and the thickness of the interface, D. Near the liquid-gas critical point the range of the forces is unchanged, but ξ and D diverge as $|t|^{-\nu}$, where $t=\left(T-T^{\mathrm{c}}\right) / T^{\mathrm{c}}$ and $\nu \sim 0.63$ in three dimensions. Fisher and Wortis (1984) have recently examined the critical behaviour of Tolman's length δ for a Landau-Ginzburg-Wilson (lGw) Hamiltonian with asymmetric operators, and deduced that

$$
\begin{equation*}
\delta \sim|t|^{x} \quad \text { where } \quad \chi=\theta_{5}-\nu \tag{6}
\end{equation*}
$$

and θ_{5} (or Δ_{5}, or $-\phi_{5}$, or $-\lambda_{5} \nu$, in other notations) is the exponent associated with the leading asymmetric correction to scaling. In Landau, or mean-field approximation, $\theta_{5}=\nu=\frac{1}{2}$, and δ tends to a finite non-zero length.

The purpose of this letter is to show that an exact expression for x can be obtained for the penetrable-sphere model (Widom and Rowlinson 1970, Rowlinson 1980). This model comes in two forms, the primitive or two-component, and the transcribed, or one-component. The first is a binary mixture of particles with pair-additive potentials, $u_{\alpha \beta}(r)$, where r is the (continuous) separation:

$$
\begin{array}{ll}
u_{a a}(r)=0, & u_{b b}(r)=0, \tag{7}\\
u_{a b}(r)=\infty & (r<d), \quad u_{a b}(r)=0 \quad(r>d)
\end{array}
$$

The second is obtained by integrating over b-particles in the grand-partition function of the first to obtain that function for a one-component system with a more complicated multi-body potential which allows the particles to penetrate each other. The primitive version, for which an index (2) is used, has an obvious $a-b$ symmetry which is hidden, but not lost, in the transcribed form, index (1).

At high activities, λ_{a}, λ_{b}, of both components, the primitive system forms two phases separated by a planar interface with a tension $\sigma^{(2)}\left(\lambda^{(2)}\right)$, where $\lambda^{(2)}\left(=\lambda_{a}=\lambda_{b}\right)$ is the common activity in both phases. By symmetry,

$$
\begin{equation*}
\rho_{a}\left(z-z_{\mathrm{s}}\right)=\rho_{b}\left(z_{\mathrm{s}}-z\right) \tag{8}
\end{equation*}
$$

where z_{s} is the surface of symmetry, on which $\rho_{a}=\rho_{b}$. The surface of tension, z_{σ}, is a property of the whole system, and hence, by symmetry, coincides with z_{s}. The surface tension is given exactly (Hemingway et al 1983, equations (3.1)-(3.4)) by

$$
\begin{equation*}
\sigma^{(2)}\left(\lambda^{(2)}\right)=2 k T \int_{\lambda^{(2) c}}^{\lambda^{(2)}}\left(\rho_{a}^{\alpha}-\rho_{a}^{\beta}\right) \delta^{(2)} \mathrm{d} \ln \lambda, \tag{9}
\end{equation*}
$$

where ρ_{a}^{α} is the density of component a in phase α, and

$$
\begin{equation*}
\delta^{(2)}=z_{\mathrm{e}}^{a}-z_{\sigma}=z_{\mathrm{e}}^{a}-z_{\mathrm{s}}=-\left(z_{\mathrm{e}}^{b}-z_{\sigma}\right)=-\left(z_{\mathrm{e}}^{b}-z_{\mathrm{s}}\right), \tag{10}
\end{equation*}
$$

where z_{e}^{a} is the equimolar surface for component a. Let $l \equiv\left(\lambda^{(2)}-\lambda^{(2) c}\right) / \lambda^{(2) c}$, and introduce the exponents

$$
\begin{equation*}
\sigma^{(2)} \sim|l|^{\mu^{(2)}}, \quad\left(\rho_{a}^{\alpha}-\rho_{a}^{\beta}\right) \sim|l|^{\beta^{(2)}}, \quad \delta^{(2)} \sim|l|^{(2)} \tag{11}
\end{equation*}
$$

Then equation (9) requires that

$$
\begin{equation*}
\chi^{(2)}=\mu^{(2)}-\beta^{(2)}-1 \tag{12}
\end{equation*}
$$

These results can now be transcribed to those for the one-component version. The activity λ_{b} becomes a reciprocal temperature $\theta=\varepsilon / k T$, where ε is a characteristic energy, so that l becomes t. The activity λ_{a} becomes $\lambda \mathrm{e}^{\theta}$, where λ is the activity of the one-component version. The density ρ_{a} goes to ρ, and so $\beta^{(2)}=\beta^{(1)}$, and $z_{\mathrm{e}}^{a}=z_{\mathrm{e}}$. The surface tensions are the same, $\sigma^{(2)}=\sigma^{(1)}$, since there is a one-component equation that exactly parallels equation (9) (Leng et al 1976):

$$
\begin{equation*}
\sigma^{(1)}(\theta)=\frac{2}{\theta} \int_{\theta^{c}}^{\theta}\left(\rho^{\prime}-\rho^{\mathrm{g}}\right)\left(z_{\mathrm{e}}-z_{\mathrm{s}}\right) \mathrm{d} \ln \theta . \tag{13}
\end{equation*}
$$

Note, however that equation (13) contains ($z_{\mathrm{e}}-z_{\mathrm{s}}$), where z_{s} is the two-component plane of symmetry which is equal to $z_{\sigma}^{(2)}$, but which has still to be identified with $z_{\sigma}^{(1)}$. This identification can be made as follows.

The two-component interface, with $\lambda_{a}=\lambda_{b}$, can be bent isothermally to produce a drop of an a-rich phase in a b-rich medium by changing λ_{a} to λ_{a}^{*} at fixed λ_{b}, where $\lambda_{a}^{*}>\lambda_{a}$. The transcribed version is a drop of liquid in a gas with $\lambda^{*}=\lambda_{a}^{*} \mathrm{e}^{-\theta}$, and the same reciprocal temperature θ. If π denotes the pressure-to-temperature ratio then the transcription is

$$
\begin{align*}
& \pi^{(2)}\left[\lambda_{a}, \lambda_{b}\right]=\pi^{(1)}[\lambda, \theta]+\theta, \\
& \pi^{(2)}\left[\lambda_{a}^{*}, \lambda_{b}\right]=\pi^{(1)}\left[\lambda^{*}, \theta\right]+\theta . \tag{14}
\end{align*}
$$

It follows that the pressure drop across the curved surface is unchanged on transcription, and so from Laplace's equation (1),

$$
\begin{equation*}
\sigma^{(2)} / R_{\sigma}^{(2)}=\sigma^{(1)} / R_{\sigma}^{(1)} \tag{15}
\end{equation*}
$$

Tolman's equations in a d-dimensional system are

$$
\begin{equation*}
\frac{\sigma^{(2)}}{\sigma_{\infty}}=1-\frac{(d-1)\left(R_{e}-R_{\sigma}^{(2)}\right)}{R_{\sigma}^{(2)}}, \quad \frac{\sigma^{(1)}}{\sigma_{\infty}}=1-\frac{(d-1)\left(R_{e}-R_{\sigma}^{(1)}\right)}{R_{\sigma}^{(1)}} \tag{16}
\end{equation*}
$$

where R_{e} is the common equimolar radius (since $\rho_{a}=\rho$).
We now have three equations, (15) and (16), for the four unknowns $\sigma^{(1)}, \sigma^{(2)}$. $R_{\sigma}^{(1)}$ and $R_{\sigma}^{(2)}$. Put $R_{\sigma}^{(1)}=R_{\mathrm{e}}\left(1+x_{1}\right)$ and $R^{(2)}=R_{\mathrm{e}}\left(1+x_{2}\right)$, and re-arrange the equations to give

$$
\begin{equation*}
d\left(x_{1}-x_{2}\right)=2\left(x_{1}-x_{2}\right)\left(1+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)\left(1-x_{1} x_{2}\right)^{-1} \tag{17}
\end{equation*}
$$

Clearly $x_{1}=x_{2}$ unless $d=2$, when the solution is undetermined to first order in the parameters x_{1} and $x_{2} ; x_{1} \sim x_{2} \ll 1$. If, however, $d \neq 2$, then it follows that $\sigma^{(1)}=\sigma^{(2)}$, $R_{\sigma}^{(1)}=R_{\sigma}^{(2)}$, and in the planar limit $z_{\sigma}^{(1)}$ is identified with z_{s}, since we know that $R_{\sigma}^{(2)}$ goes to $z_{\sigma}^{(2)}=z_{\mathrm{s}}$. (There is no reason to believe that this is not true also for $d=2$.) This completes the identification of physical properties, and so of their exponents. We have, dropping now the index (1),

$$
\begin{equation*}
\delta \sim|t|^{x} \quad \text { where } \quad x=\mu-\beta-1 \tag{18}
\end{equation*}
$$

In a mean-field approximation, $\mu=\frac{3}{2}, \beta=\frac{1}{2}$ and χ is again zero. Nicoll and Zia (1981) have obtained the ε-expansion of θ_{5}, and their result precludes the identification of ($\theta_{5}-\nu$) of equation (6) with ($\mu-\beta-1$) of equation (18). Since $\mu=2-\alpha-\nu$, the difference in the two expressions for χ is that of $(1-\alpha)$ from $\left(\theta_{5}+\beta\right)$. This is just the difference found by Vause and Sak (1980) and Sak and Vause (1980) between the leading singular term in the orthobaric diameter, ρ_{d}, in the LGW model, and that for the penetrable-sphere model. The resolution of this paradox (Fisher 1984) is that if all possible terms are included in the lGw Hamiltonian then the t-expansions of ρ_{d} and δ contain both types of term; that is $(1-\alpha)$ and $\left(\theta_{5}+\beta\right)$ in ρ_{d}, as shown previously by Nicoll (1981, equation ($5.20 b$), and ($\mu-\beta-1$) and ($\theta_{5}-\nu$) in δ. Presumably it is the hidden symmetry of the penetrable-sphere model that makes the coefficient of the $\left(\theta_{5}-\nu\right)$ term zero, and leaves only that in $(\mu-\beta-1)$.

Fisher and Wortis were unable to deduce the behaviour of δ in the critical region ($d=3$) from the $\left(\theta_{5}-\nu\right)$ term because of the poor convergence of the ε-expansion of θ_{5};

$$
\begin{equation*}
\theta_{5}-\nu=\frac{11}{12} \varepsilon-\frac{293}{324} \varepsilon^{2} \tag{19}
\end{equation*}
$$

The exponent ($\mu-\beta-1$), which is equal to ($1-\alpha-\beta-\nu$), is about -0.06 for $d=3$, and $-\frac{1}{8}$ for $d=2$. Its ε-expansion is

$$
\begin{equation*}
\mu-\beta-1=-\frac{1}{12} \varepsilon+\frac{13}{324} \varepsilon^{2} . \tag{20}
\end{equation*}
$$

It follows that δ diverges at the critical point at least as rapidly as $|t|^{\mu-\beta-1}$.
I thank Mr M P A Fisher for sending me his work before publication, and for a helpful correspondence.

References

Fisher M P A 1984 Private communication
Fisher M P A and Wortis M 1984 Phys. Rev. B In press
Hemingway S J, Rowlinson J S and Walton J P R B 1983 J. Chem. Soc. Faraday Trans. II 791689
Leng C A, Rowlinson J S and Thompson S M 1976 Proc. R. Soc. A 3521
Nicoll J F 1981 Phys. Rev. A 242203
Nicoll J F and Zia R K P 1981 Phys. Rev. B 236157
Rowlinson J S 1980 Adv. Chem. Phys. 411
Rowlinson J S and Widom B 1982 Molecular Theory of Capillarity (Oxford: University Press) §§ 2.4, 4.8, 5.7 and 9.3

Sak J and Vause C 1980 J. Phys. A: Math. Gen. 13 L217
Vause C and Sak J 1980 Phys. Rev. A 212099
Widom B and Rowlinson J S 1970 J. Chem. Phys. 521670

