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LETTER TO THE EDITOR 

The critical exponent of Tolman’s length 

J S Rowlinson 
Physical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK 

Received 8 February 1984 

Abstract. The change of surface tension with curvature is governed by a microscopic 
length, 6, introduced by Tolman. It is shown that this length diverges weakly at the 
liquid-gas critical point of the penetrable-sphere model, with an exponent ( p  -j3 - I), 
where p is the exponent of the surface tension, and j3 of the orthobaric densities. This 
result is compared with those derived from Landau-Ginzburg-Wilson Hamiltonians. 

The surface tension of a spherical liquid drop, U, and the radius at which it acts, the 
radius of tension R ,  are related by the equations (Rowlinson and Widom 1982) 

p l - p g =  2 u / R ,  (Laplace) ( 1 )  

U = U,( 1 - 2S/R,)  (Tolman) ( 2 )  

where p’ and p g  are the pressures in the homogeneous liquid within the drop and in 
the gas outside it, where a, is the tension of the planar surface ( R ,  = 00) at the same 
temperature, and where Tolman’s length, 6, is given by 

S = Re - R,  = Z, - Z, (3) 
Here Re is Gibbs’s equimolar surface: 

R 2  dR ( p ( ~ )  - R ) )  = 0, 

where p ( R )  is the density at radius R, and 

( 4 )  

Since equation (2) is valid only for first order in the curvature, ( l / R , ) ,  the length 6 
can be equated to the planar limit of R e - R ,  namely ze-zu for an interface in the 
x, y plane. 

In a liquid at low temperatures, S is the same order of magnitude, lo-’’ m, as the 
range of the intermolecular forces, the statistical correlation length, 6, and the thickness 
of the interface, D. Near the liquid-gas critical point the range of the forces is 
unchanged, but 6 and D diverge as It[-’, where t = ( T -  F)/ T and Y - 0.63 in three 
dimensions. Fisher and Wortis (1984) have recently examined the critical behaviour 
of Tolman’s length S for a Landau-Ginzburg-Wilson (LGW) Hamiltonian with asym- 
metric operators, and deduced that 

S - l t l x  where x = O 5 - v  (6) 
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and O5 (or A5, or -&, or -A5v, in other notations) is the exponent associated with 
the leading asymmetric correction to scaling. In Landau, or mean-field approximation, 
O5 = Y = i, and 6 tends to a finite non-zero length. 

The purpose of this letter is to show that an exact expression for x can be obtained 
for the penetrable-sphere model (Widom and Rowlinson 1970, Rowlinson 1980). This 
model comes in two forms, the primitive or two-component, and the transcribed, or 
one-component. The first is a binary mixture of particles with pair-additive potentials, 
uaB( r ) ,  where r is the (continuous) separation: 

( 7) 
u,,(r) =O, Ubb(r) =o, 
uab(r) = O0 ( r  < 4, uab(r) = o  ( r >  d). 

The second is obtained by integrating over b-particles in the grand-partition function 
of the first to obtain that function for a one-component system with a more complicated 
multi-body potential which allows the particles to penetrate each other. The primitive 
version, for which an index ( 2 )  is used, has an obvious a-b symmetry which is hidden, 
but not lost, in the transcribed form, index (1).  

At high activities, A,, A b ,  of both components, the primitive system forms two 
phases separated by a planar interface with a tension a(2)(A(2)), where A(') (= A, = A b )  

is the common activity in both phases. By symmetry, 

(8) Pa (2 - 2 s )  = Pb( 2 s  - z ) ,  

where z, is the surface of symmetry, on which pa = pb The surface of tension, z, is 
a property of the whole system, and hence, by symmetry, coincides with z,. The surface 
tension is given exactly (Hemingway et af 1983, equations (3.1)-(3.4)) by 

AI21 

a(2)(A(2)) = 2kT A12)c (p:  -p!)6 '"  d In A,  (9) 

where pz is the density of component a in phase a, and 

(10) 
b a(*) = 2," - 2, = 2," - 2, = -( 2, - Z m )  = -( 2: - z,), 

where z," is the equimolar surface for component a. Let f = (A'"- A(2)c ) /A(2 )c ,  and 
introduce the exponents 

a(2)-  py(21, ( p :  - p ! )  - p)-  1 p ' 2 ' .  (11) 

Then equation (9) requires that 

x'2' = 1112) - (2) p -1.  

These results can now be transcribed to those for the one-component version. The 
activity A b  becomes a reciprocal temperature 0 = E /  kT, where E is a characteristic 
energy, so that I becomes t. The activity A, becomes A ee, where A is the activity of 
the one-component version. The density pa goes to p, and so p(2 )  = p( l ) ,  and 2," = 2,. 

The surface tensions are the same, a(') = a('), since there is a one-component equation 
that exactly parallels equation (9) (Leng et af 1976): 
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Note, however that equation (13) contains ( ze-z , ) ,  where z, is the two-component 
plane of symmetry which is equal to z?’, but which has still to be identified with 2:’. 

This identification can be made as follows. 
The two-component interface, with Aa = Ab, can be bent isothermally to produce a 

drop of an a-rich phase in a b-rich medium by changing A, to A t  at fixed A b ,  where 
A t  > A,. The transcribed version is a drop of liquid in a gas with A *  = A $  e-’, and the 
same reciprocal temperature 8. If T denotes the pressure-to-temperature ratio then 
the transcription is 

It follows that the pressure drop across the curved surface is unchanged on transcription, 
and so from Laplace’s equation ( l ) ,  

U t 15) a(2)/R(2) = u(l) /R(l)  
0 .  

Tolman’s equations in a d-dimensional system are 

where Re  is the common equimolar radius (since pa = p ) .  
We now have three equations, (15) and (16), for the four unknowns a(’), a‘”. 

Rb“ and R?’. Put Rb“ = Re( 1 + xl) and R‘2’ = Re( 1 + x2) ,  and re-arrange the equations 
to give 

d(x1 - x Z )  = 2 ( ~ 1 - ~ 2 ) (  1 + $ x i  +$xZ) (  1 - x ~ x Z ) - I .  (17) 

Clearly x1 = x2 unless d = 2, when the solution is undetermined to first order in the 
parameters x1 and x2;  x1 - xz<< 1. If, however, d # 2, then it follows that dl’= U(’), 

goes to z?) = z,. (There is no reason to  believe that this is not true also for d = 2.) 
This completes the identification of physical properties, and so of their exponents. We 
have, dropping now the index (11, 

RY) = R(2) , and in the planar limit zb“ is identified with z,, since we know that Rb2’ 

6-lrlY where x = p - p - l .  (18) 

In a mean-field approximation, p = $, p = $ and x is again zero. Nicoll and Zia (1981) 
have obtained the &-expansion of Os, and their result precludes the identification of 
( 8 , - v )  of equation (6) with ( p - p - 1 )  of equation (18). Since p = 2 - a - u ,  the 
difference in the two expressions for x is that of (1 -a) from ( 8 , + p ) .  This is just the 
difference found by Vause and Sak (1980) and Sak and Vause (1980) between the 
leading singular term in the orthobaric diameter, pd, in the LGW model, and that for 
the penetrable-sphere model. The resolution of this paradox (Fisher 1984) is that if 
all possible terms are included in the LGW Hamiltonian then the t-expansions of pd 
and 6 contain both types of term; that is (1 - a) and ( O5 + p )  in p d ,  as shown previously 
by Nicoll (1981, equation (5 .20b)) ,  and ( p  - p - 1) and (Os - v) in 6. Presumably it 
is the hidden symmetry of the penetrable-sphere model that makes the coefficient of 
the (Os- v) term zero, and leaves only that in (h  - p  - 1). 
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Fisher and Wortis were unable to deduce the behaviour of S in the critical region 
( d  = 3) from the (e5 - v) term because of the poor convergence of the &-expansion of 
65 ; 

(19) es-v=" 293 2 
12&-jT;i& * 

The exponent ( p  - p  - l) ,  which is equal to (1 - CY - p  - v), is about -0.06 for d = 3, 
and -i for d = 2. Its &-expansion is 

p - p - 1 = - & & + 1 3  324& 2 * (20) 
It follows that S diverges at the critical point at least as rapidly as ItlPL-@-' 

I thank Mr M P A Fisher for sending me his work before publication, and for a helpful 
correspondence. 
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